Utilization of a Vapor Recovery Tower For The Reduction of Tank Emissions
Agenda

- Need & Concerns
- VRT Functionality
- Process Model
- Benefits of Limiting Tank Flash
- Benefits of Higher MAWP of VRT
- Considerations
- Summary & Conclusions
- Q&A
Need & Concerns

The Issues and Concerns That Exist Today
Need: Atmospheric Tank Design

- General design criteria: API 12F [1]
 - 90-500 BBL tanks design:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1: API 12F Tank Design Pressures</td>
<td></td>
</tr>
<tr>
<td>Design Vacuum</td>
<td>$\frac{1}{2}$ (\text{oz}) (\text{in}^{-2})</td>
</tr>
<tr>
<td>Design Pressure</td>
<td>16 (\text{oz}) (\text{in}^{-2})</td>
</tr>
<tr>
<td>Emergency Venting</td>
<td>24 (\text{oz}) (\text{in}^{-2})</td>
</tr>
</tbody>
</table>

- Relief methods
 - Vent Line
 - Creates back pressure
 - Large line size
 - Thief/Gauge hatches
 - Sealing concerns: (reseating & wear)
 - Flame propagation
Need: Vapor Recovery Unit

- Operating VRU on tank vent line
 - Small suction pressure range
 - Potential to pull vacuum
 - Oxygen in tanks from tank breathing & gauging
 - Compressing air and gas
 - Oxygen in sales line

(Unimac Gas Compression Solutions)\(^2\)
Need: Operator Safety

- Tank gauging process
 - Open thief hatch
 - Lower tank gauge tape
 - Standing over/by hatch

- Operator exposed to flashed gas
 - Explosive, irritant, & asphyxiant
 - Possibility of H_2S
Need: New Regulations

- 40 CFR 60, Subpart OOOO
 - Tanks with more than 6 tons/year VOC

- Colorado:
 - CDPHE: Regulation 7
 - COGCC: Series 800
Vapor Recovery Tower

VRT: Functionality & Computer Models
VRT: Functionality

Separation mechanisms:
- Low pressure: Flashing of light ends
- Greater diameter than inlet: lower velocity lessens gas entrainment
- Vessel height: gravitational separation
- Mist pad: Liquid impingement

Stream destinations
- Gas: Combustion device/VRU
- Oil: Oil tanks
- Recycle: Separator inlet
VRTX: Functionality

Vessel construction

- Larger pressure operating range
 - Pressure vessel: makes higher operating pressure possible
 - Fluid driven by hydraulic head: Makes low-pressure operation possible
- No low-pressure/vacuum vents
 - No process gas to environment
 - No oxygen can enter
Process Model[3]: Without VRT

Temp: 120°F
Pressure: 39.7 psia
API Gravity: 51.1
Flow: 1030 bbl/day

Temp: 108°F
Pressure: 12.7 psia
API Gravity: 49.6
Flow: 1005 bbl/day

Sales Gas Properties
Temp: 70°F
Pressure: 39.7 psia
Btu Content: 1397 btu/scf
Flow: 704 Mscfd

Note: Atmospheric pressure is based off of Denver, CO [12.2psia]
Process Model[^3]: With VRT

Sales Gas Properties
- **Temp:** 70°F
- **Pressure:** 39.7 psia
- **Btu Content:** 1397 btu/scf
- **Flow:** 704 Mscfd

Note: Atmospheric pressure is based off of Denver, CO [12.2psia]

[^3]: Atmosphere
Process Analysis

Table 2: Tank Flash Gas Comparison

<table>
<thead>
<tr>
<th></th>
<th>With VRT</th>
<th>Without VRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Production Rate</td>
<td>1.4 (Mscfd)</td>
<td>35.9 (Mscfd)</td>
</tr>
<tr>
<td>Yr. 1 Average Rate</td>
<td>0.7 (Mscfd)</td>
<td>17.95 (Mscfd)</td>
</tr>
<tr>
<td>Yr. 1 Total Volume</td>
<td>255.5 (Mscf)</td>
<td>6,552 (Mscf)</td>
</tr>
<tr>
<td>Yr. 1 Total VOC</td>
<td>4.5 tons</td>
<td>115 tons</td>
</tr>
</tbody>
</table>

Assumptions:
1. 35 lb/Mscf VOC emissions factor
2. Decline rate based of unconventional decline curve and equates to the average first years production being 50% of initial production
3. Based on 1000 bbl/day initial production
VRT: Benefits of Installation

- Limits volumetric gas flow through tanks
 - Less back pressure on tanks
 - Keep thief hatches from opening
 - Lower uncontrolled emissions
 - Increase process/operating safety (ignition potential)
 - Manual tank gauging
 - Limits emissions while hatch is open
 - Reduces operators risk
 - Explosion/fire
 - Operator exposure/H₂S hazard
 - May allow vent line size reduction
 - Lower material cost
 - Lower labor cost
 - Lower construction time
 - Quad O
VRT: Benefits of Installation

- Allows for higher working pressure of gas
 - Easier measurement if desired
 - Flow meter can be allowed to create lbs. of back pressure
 - Measurements can be more accurate
 - Higher pressure to combustor
 - Move more gas volume
 - Higher burner tip velocity
 - Better fuel air mixing
 - Better combustion of heavier components
 - Protection for tank overpressure
 - Oil dump valve sticking open
 - High oil dump rate
 - Higher VRU suction pressure
 - May simplify controls
 - Protect from pulling vacuum on tanks
VRT: Added Benefits

- Additional point for separation
 - Water off the bottom of the tower
 - Mist pad to coalesce entrained liquid in gas

- Liquids surge vessel
 - More continuous flow to tanks
 - Help eliminate liquid slugging in tanks
 - Lessen pressure spikes due to filling tank
VRT: Special Considerations

- Stake holder view/height restriction
- Additional capital cost
- Lightning strike concerns
- Process considerations
Summary & Conclusion
Summary/Conclusions

- Installation of a VRT can be used as an engineering solution to reduce VOC emissions
- Installation of a VRT can help to improve operator/process safety
- Installation of a VRT gives you additional overpressure/vacuum protection for atmospheric tanks
- Installation of a VRT would lessen the likelihood of gauge hatches unseating and thus lower the chance of infractions
- Cost, stakeholder perspective, lightning risk, and process conditions must be examined when considering VRT installation
Questions & Answers
Special Thanks & Citations

Special Thanks:

— Steve G. Bradford, Engineering Manager
— Milind J. Bhatte, Manager of L48 Environmental & Sustainable Development
— Ken T. Powers, Superintendent of Niobrara Operations
— Terry L. Parker, Facilities Engineer
— Seth Lovelady, Facilities Engineer
— Maria A. Torres, Environmental & Regulatory Supervisor
— Beth Aldrich, Environmental Coordinator

Citations:

Biography

Bachelor of Science in Mechanical Engineering
 - Texas A&M: graduated *magna cum laude*

Research Positions
 - High temperature metallic/ceramic compounds: 2yr
 - Down-hole shaped charge design: 1yr

Oilfield Positions
 - Downstream refining
 - Projects engineer: 2010
 - Maintenance engineer: 2011
 - Exploration & production
 - Facilities engineer: 2012-present